Specification of the IEEE-854 Floating-Point
Standard in HOL and PVS

(To be presented at the 1995 International Workshop on Higher Order Logic Theorem Proving and its Applications, September 11-14,

Aspen Grove, Utah, USA, as a track B paper and included in supplemental proceedings)

Victor A. Carreno Paul S. Miner
NASA Langley Research Center
Hampton, VA 23681-0001
{v.a.carreno,p.s.miner }ALaRC.NASA.GOV

Abstract
The IEEE-854 Standard for radix-independent floating-point arithmetic has
been partially defined within two mechanical verification systems. We present
the specification of key parts of the standard in both HOL and PVS. This effort
to formalize IEEE-854 has given the opportunity to compare the styles imposed
by the two verification systems on the specification.

1 Introduction

The HOL [3] and PVS [7] systems are general purpose mechanical verification systems
whose specification languages are based on higher-order logic. We have partially de-
fined the ANSI/TEEE-854 standard for radix-independent floating-point arithmetic [5]
in both of these verification systems [2, 6]. This effort to formalize IEEE-854 has given
the opportunity to compare the styles imposed by the two verification systems on the
specification. This is not the first formalization of floating-point arithmetic. Geoff
Barrett [1] describes the Z formalization of IEEE-754 used in the development of the
INMOS T800 Transputer. The work reported here is different in two respects. 7 is
primarily a specification language with limited mechanical support. Both HOL and
PVS provide substantial support for machine checked theorem proving. Also, IEEE-
854 is a generalization of the ANSI/IEEE-754 [4] standard for binary floating-point
arithmetic.

This paper will compare portions of the two specifications. Section 2 will describe
the aspects of IEEE-854 addressed by this paper. Sections 3 and 4 will present the
HOL and PVS formalizations, respectively. Section 5 will discuss the differences
between the two specifications. We believe that modern verification systems are
advancing to the point where it may become practical to formally define standards
using a mechanized logic.

2 IEEE-854 Standard

IEEE-854 is a general standard for floating-point arithmetic. In contrast to the IEEE-
754 standard for binary floating-point arithmetic [4], [EEE-854

e does not define formats for storage of floating-point numbers,

does not fully specify the required number of digits,

does not fully specify the exponent range, and

e allows for decimal as well as binary arithmetic.

However, some constraints are still required to ensure that the number system is well
behaved. Thus, IEEE-854 is parameterized with constraints placed on the formal
parameters. Section 3.1 of the standard defines the parameters:

Four integer parameters specify each precision:

b = the radix

p = the number of base-b digits in the significand
Eouw = the maximum exponent
E,iw = the minimum exponent

The parameters are subject to the following constraints:

1. b shall be either 2 or 10 and shall be the same for all supported
Precisions

2. (Emaz — Fmin)/p shall exceed 5 and should exceed 10
3. P71 > 10°

The balance between the overflow threshold (bFme=+1) and the underflow
threshold (bPmin) is characterized by their product (bFmastEmintly phich
should be the smallest integral power of b thatl is > 4. [5, page 8]

The precisions defined are single, double, single extended, and double extended. In
addition to satisfying the above constraints, the relationship between the supported
precisions is also constrained. Since the examples in this paper do not deal with
multiple precision, we will not present these constraints here.

2.1 Floating-Point Numbers

The standard defines operations using the following definitions of floating-point num-

bers:

Each precision allows for the representation of just the following entities:
1. Numbers of the form (—1)*b¥(dy.dydy -+~ d,_1) where

s = an algebraic sign
E = any integer between F,;, and E,,.., inclusive

d; = abase-b digit (0<d; <b—1)

2. Two infinities, +o0o0 and —oo
3. At least one signaling NaN
4. Al least one quiet NaN [5, page 8]

We will illustrate how we represent these entities in both HOL and PVS.

2.2 Rounding

Since floating-point numbers are a finite approximation of the real numbers, the
standard defines how real numbers are mapped into a floating-point representation:

An implementation of this standard shall provide round to nearest as the
default rounding mode. In this mode the representable value nearest to the
infinitely precise result shall be delivered; if the two nearest representable
values are equally near, the one with ils least significant digit even shall
be delivered. [, Section 4.1, page 9]

In addition, the standard continues:

An implementation of this standard shall also provide three user-selectable
directed rounding modes: round towards +oo, round towards —oc, and
round towards 0. [5, Section 4.2, page 9]

There are many different ways to specify rounding. The HOL specification gives
abstract definitions that satisfy the required properties. The PVS specification uses
more concrete definitions of the rounding functions. These are proven to satisfy the
necessary abstract properties. Rounding was the most difficult part of the standard
to define formally.

2.3 Arithmetic Operations

The standard states the following requirements for arithmetic operations:

All conforming implementations of this standard shall provide operations
to add, subtract, multiply, divide, extract the square root, find the remain-

der

PRI

.., each of the operations shall be performed as if it first produced an
intermediate result correct to infinite precision and with unbounded range,
and then coerced this intermediate result to fit in the destination’s preci-
sion. [5, Section 5, page 10]

We will illustrate the definition of arithmetic functions using definitions of floating-
point addition.

3 HOL system specification

This section gives a partial specification of IEEE-854 for illustration purposes and for
comparison with the PVS specification. The full IEEE-854 specification in HOL is
given in [2]. The definition in HOL of the parameter restrictions, floating-point type,
rounding, and the add operation are discussed in this section. John Harrison’s reals
library and Elsa Gunter’s integer library are used for the definition of the real and
integer type. The natural, real, and integer numbers are separate types in the HOL
system with different functions defining arithmetic and other operations. A sample
of the arithmetic operators for the naturals, integers and reals is:

natural integer real standard symbol
- minus real_sub —
< below real It <
<= below_or_e real_le <
0 INT 0 & 0 0
abs(x) |z

In the HOL system the symbol ? represents 3, ! represents V, and @ is the choice
or Hilbert operator.

The four parameters defining a precision, b, p, K., and E,,;,, are defined in the
HOL system by declaring b as a constant and placing constraints on the values of p,
Erar, and E,,. b and p are of type " :num"; Emax and Emin are of type ":integer".

new_definition(‘b‘,"b = @n.(n=2)\/(@=10)");;

new_definition(‘single‘,
"single p emax emin = (INT(5%p) below (emax minus emin))");;

new_definition(‘sig",
"sig p = ((b = 2) ==> (17 < p)) /\ ((b = 10) ==> (56 < p))");;

The definition of b, the radix, is in accordance with the first constraint, Section
2. The second constraint is addressed by the predicate single. The definition of sig
is an algebraic simplification of the third constraint. In order to be complaint with

IEEE-854, it is necessary to show that the predicates sig and single are true for
the corresponding instantiation of p, Emax and Emin. We have proven in HOL that
the values for single precision in Standard IEEE-754 comply with the predicates sig
and single.

3.1 Floating-point numbers

The meaning of a floating-point number, a value, positive and negative infinite, and
signaling and quiet NaNs, is represented in the HOL system respectively by,

"finite (sign,Exp,dig)"! with value —1519m 4 pEEp do.dydy...d, 1,
"infinite 0" and "infinite 1"
"NaN (signal,n)" and "NaN (quiet,n)"

where n is an arbitrary natural number and finite, infinite, and Nal are type
constructors that when applied to a triple of type (num#integer#(num -> num)), an
element of type num, and a pair of type (NaN_type#num), respectively, will return an
element of type fp_num.

Before the floating-point type is defined, a type for signaling and quiet NaNs is defined,

define_type ‘NaN_type‘ ‘NaN_type = signal | quiet‘;;
The floating-point type is defined by,

define_type ‘fp_num®

‘fp_num = finite (num#integer#(num -> num)) |
infinite num |
NaN (NaN_type#num) ‘;;

The following definitions for identifying and manipulating floating-point(fp) num-
bers are used in the specification of floating-point operations.

new_definition(‘is_finite‘, "is_finite fp = (7?X.fp = (finite X))");;

new_definition(‘is_infinite®,
"is_infinite fp = (?X.fp = (infinite X))");;

new_definition(‘is_NaN‘, "is_NaN fp = (7X.fp = (NalN X))");;

new_definition(‘i_finite, "i_finite fp = (@X.fp = (finite X))");;

1dig is a function which takes the position of the digit and returns the digit itself. For example

new_definition(‘i_infinite®,
"i_infinite fp = (@X.fp = (infinite X))");;

new_definition(‘i_NaN‘, "i_NaN fp = (@X.fp = (NaN X))");;

The first three definitions are predicates which return true when applied to a finite,
infinite, and NaN fp number, respectively, and false otherwise. The last three defini-
tions are the inverse of the respective type constructors and will return the argument
of the constructor when applied to the appropriate fp number. The theorems,

|- 'z.i_finite (finite z) = z
|- 'z.i_infinite (infinite z) = z
|- 'z.i_NaN (NaN z) = z

have been proven on these functions and illustrate the action of the inverse functions.
Floating-point numbers in HOL are restricted in accordance with IEEE-854 by
the predicate,

new_definition (‘precis_c°,
"precis_c emax emin fp =

(emin below_or_e (exponent fp))/\
((exponent fp) below_or_e emax)/\
(In.(digits fp)n < b)");;

The predicate precis_c restricts the exponent value of an fp number to be within
the minimum and maximum exponent values and the value of each digit in the sig-
nificand to be between 0 and b-1 inclusive.

3.2 Rounding

Rounding is defined in the HOL system in an assertional style. The rounding func-
tion takes a real number, a rounding precision, and a destination precision predicate
and returns a finite floating-point representation which complies with the IEEE-854
requirements. A function is used for each rounding mode. Round to near is defined

by,

"round2near r p precis =
(7fpl.precis fpl1 /\
('fp.(precis fp) /\"(fp_value fp p = fp_value fpl p) ==
abs(fp_value fpl p real_sub r) real_lt
abs(fp_value fp p real_sub r))) =>
(6fpl.precis fp1l /\
('fp.(precis fp) /\"(fp_value fp p = fp_value fpl p) ==
abs(fp_value fpl p real_sub r) real_lt

abs(fp_value fp p real_sub r))) |
@fpl. (precis fpl) /\
('fp.(precis fp) ==
abs(fp_value fpl p real_sub r) real_le
abs(fp_value fp p real_sub r)) /\
(EVEN ((digits fp1)(p-1)))");;

The function round2near states that if there exists an fp with a unique value
nearest to r, then return that fp. If there are more than one fp with values nearest to
r then return an fp with value nearest to r and last digit even. round2near uses the
function fp_value which extracts the value of a floating-point number returning a
real number. We have shown in HOL that |- is_zero (round2near 0 p precis)
and |- is_zero fp ==> (fp_value (fp) = &0).

3.3 Arithmetic operations

Arithmetic operations on floating-point numbers are defined by performing the opera-
tions on the floating-point number values in the real numbers domain, and converting
the result to a floating-point representation using the rounding definition.

The add definition is selected to represent the definition of arithmetic operations
on floating-point.

new_definition (‘fp_add‘,
"fp_add fpl fp2 p pr traps mode tiny acc emax emin =
(is_infinite fpl /\ is_infinite fp2 /\ “(fp_sign fpl = fp_sign fp2))
=> (NaN(quiet,cn),invalid) |
(is_infinite fpl) => (fpl,no_excep) |
(is_infinite fp2) => (fp2,no_excep) |
((fp_is_zero fpl1)/\(fp_is_zero fp2)/\(fp_sign fpl = fp_sign fp2))
=> (fpl,no_excep) |
round ((fp_value (i_finite fpl) p) real_add
(fp_value (i_finite fp2) p))
pr traps mode tiny acc emax emin");;

Function fp_add takes two floating-point numbers, £p1 and £p2, a rounding mode
mode, and several other parameters®. It returns a floating-point and an exception flag.
When both operands in the fp add operation are infinite and their algebraic signs are
not equal the operation produces a quiet NaN, an invalid exception, and possibly
invokes a trap handler. When both operands are infinite and their algebraic signs are

?p is the operand’s number of significant digits, pr is the rounding precision, traps are the
enabling and disabling flags for trap handlers, tiny and acc are the methods to detect underflow,
and emax and emin are the destination precision maximum and minimum exponent. For a full
explanation of these arguments see reference [2].

equal, or when one of the operand is infinite, the add operation produces an infinite
fp number of the appropriate sign with no exceptions. When the operands are both
finite, the values of the fp numbers are converted to reals, added with infinite precision
using the real_add function and rounded to the destination precision according to
the rounding mode.

The operands passed on to fp_add are always finite or infinite. NaNs are filtered
by the function invoking fp_add.

4 PVS Specification

This section illustrates parts of the PVS specification of IEEE-854 [6]. The PVS
prelude defines the real numbers as a base type that satisfies a standard set of axioms.
The basic arithmetic operations are built-in and a number of pre-proven theorems
about the real numbers are available in the PVS prelude. Many of these properties
are also known by the PVS decision procedures. Other numeric types are defined as
progressively smaller sub-types of the reals. For example, the rationals are defined as
a sub-type of the reals that does not satisfy the Completeness Axiom. Similarly, the
integers are defined as a sub-type of the rationals that is not closed under division.

In PVS, the parameters required by IEEE-854 [5] can be defined as parameters
to the formal theory. Within a theory, the parameters are treated as constants of the
appropriate type. By instantiating the following theory multiple times with different
values for the parameters, we can readily define the different precisions allowed by
the standard.

IEEE_854 [b,p:above(l),E_max,E_min:integer]: THEORY
BEGIN

ASSUMING
Base_values: ASSUMPTION b=2 or b=10
Exponent_range: ASSUMPTION (E_max - E_min)/p > 5 %10
Significand_size: ASSUMPTION b~ (p-1)>=10"5
% E_balance: ASSUMPTION
% IF b < 4 THEN E_max + E_min = 1 ELSE E_max + E_min = 0 ENDIF
ENDASSUMING

% Exponent_balance: LEMMA b~ (E_max+E_min) <4 & 4<=b" (E_max+E_min+1)
E_max_gt_E_min: LEMMA E_max > E_min
IMPORTING IEEE_854_defS[b,p,E_maX,E_min]

END IEEE_854

This PVS theory has four formal parameters: b and p are constrained to be of type
above(1),i.e. b,p € {7 :int|t > 1}; Fu and E,;, are unconstrained integers. The
assuming section allows us to define constraints on the formal parameters. The above
assumptions correspond directly to the constraints given by the standard. Any PVS
theory that imports IEEE 854 incurs proof obligations during typechecking to show
that the actual parameters satisfy these assumptions. In the case of the instantiations
required for IEEE-754 [4]?, PVS automatically verifies these assumptions for both sin-
gle and double precision. The assumption E_balance and lemma Exponent balance
are commented out. These constraints are not strictly required by the standard.
They are included here to indicate how the optional portions of the standard may be
addressed within PVS.

Theory IEEE 854 _defs imports all of the underlying theories containing the defi-
nitions of floating-point numbers and operations.

4.1 Definition of Floating-Point Numbers

Floating-point numbers are defined using the PVS abstract datatype mechanism [8].
The following PVS theory is parameterized as above, except that F,,;, is constrained
via the dependent type mechanism to be strictly less than K, ..

IEEE_854_values
[b,p:above(l),
E_max:integer,
E_min:{i:integer | E_max > i}]: THEORY

BEGIN

sign_rep: type = {n:nat | n = 0 or n = 1}
Exponent: type = {i:int | E_min <= i & i <= E_max}
digits: type = [below(p)->below(b)]

NaN_type: type = {signal, quiet}
NaN_data: NONEMPTY_TYPE

fp_num: datatype
begin
finite(sign:sign_rep,EXp:EXponent,d:digits):finite?
infinite(i_sign:sign_rep): infinite?
NaN(status:NaN_type, data:NaN_data): NaN?
end fp_num

3For single precision, the IEEE-754 parameters are: b = 2, p = 24, E,,q, = 127, and E,n =
—126.

We use the predicate subtype mechanism to constrain our representation to the set
of values required by the standard. Type sign _rep is the set {0,1}. Type Exponent
is defined to be the collection of integers between F,,;, and FE,,,, inclusive; the re-
striction on F,,;, in the formal parameter list ensures that this type is non-empty.
Type digits is the collection of functions from below(p) to below(b), where the
PVS prelude defines below(n) : TYPE = {i: nat|i < n}.

The definition of datatype fp_num states that the type of floating-point numbers is
the disjoint union of three sets: finite numbers, infinite numbers, and Not a Numbers
(NaNs). A finite number can be constructed (using constructor finite) from an
algebraic sign, an integer exponent (in the appropriate range), and a significand; an
infinity can be constructed from an algebraic sign; and a NaN can be constructed
from a status flag (i.e. signal or quiet) and data undetermined by the standard.

The valuation function implied by the standard is defined in PVS by:

value_digit(d:digits)(n:nat) :nonneg_real =
IF n < p THEN d(n) * b =~ (-n) ELSE 0 ENDIF

value(fin: (finite?)): real =
(-1) ~ sign(fin) * b ~ Exp(fin) * Sum(p, value_digit(d(fin)))

Where type (finite?) is a predicate sub-type of datatype fp_num, and sign, Exp,
and d are the accessors for the sign, exponent, and significand fields of finite floating-
point numbers. We initially verified that a few instances of finite floating-point num-
bers have the expected value to provide evidence that this definition is correct. The
first proof attempt uncovered an error in our first definition of value.

We have since proven that the range of function value is correct. Namely, that
the value of a floating-point number representing zero is 0 and that for every nonzero
finite floating-point number, fin:

b(Emin_(p_l)) § |Value(f1n)| g b(Ema.r+1) _ b(Emam_(p_l))

4.2 Rounding

The PVS specification first defines rounding an arbitrary real to an integer for each
of the rounding modes required by the standard. This allows us to take advantage of
the functions floor and ceiling to control the direction of rounding.

sgn(r:real): integer =
IF r >= 0 THEN 1 ELSE -1 ENDIF

round_to_even(r:real): integer =
IF r - floor(r) < ceiling(r) - r THEN floor(r)
ELSIF ceiling(r) - r < r - floor(r) THEN ceiling(r)
ELSIF floor(r) = ceiling(r) THEN floor(r)

ELSE 2 * floor(ceiling(r) / 2)
ENDIF

round(r:real,mode:rounding_mode): integer =
CASES mode of
to_nearest: round_to_even(r),

to_zero: sgn(r) * floor(abs(r)),
to_pos: ceiling(r),
to_neg: floor(r)

ENDCASES

The built-in PVS strategy? (grind) is able to prove that |r — round(r,mode)| < 1
and that |r — round_to_even(r)| < 7 [6]. We can use these definitions to round reals
to p significant base-b digits by scaling the argument appropriately.

scale_correct: LEMMA
b ~ (p-1) <= px * b ~ (-scale(px)) &
px * b ~ (-scale(px)) < b "~ p

fp_round(r, mode): real =
IF r = 0 THEN O
ELSIF over_under?(r) then
round_exceptions(r,mode)
ELSE LET E = scale(abs(r)) IN
b~ E * round(r * b ~ (-E), mode)
ENDIF

Analogous to the integer cases, we have proven in PVS that fp_round(r,mode) is
within one least significant base-b digit of r (within § for mode = to nearest). We
have also shown that the direction of rounding is correct [6]. These functions are
combined with function real to fp which maps an appropriately rounded real to a
corresponding floating-point representation. The inexact exception is signaled when-
ever r # fp_round (r,mode). Function round_exceptions handles those cases where
overflow or underflow may have occurred [6].

4.3 Arithmetic Operations

The basic definition for an arithmetic operation is illustrated by the following defini-
tion for fp_add; the definitions for fp_sub and fp_mult are nearly identical. Operation
fp_div requires special treatment when £p2 denotes 0.

fp_add(fpl, fp2, mode): fp_num =

4PVS strategies are analogous to HOL tactics.

IF finite?(fpl) & finite?(fp2) THEN fp_op(add, fpl, fp2, mode)
ELSIF NaN?(fpl) OR NaN?(fp2) THEN fp_nan(add, fpl, £p2)

ELSE fp_add_inf(fpl, fp2)

ENDIF

The function definition invokes one of three functions depending on the arguments. If
both arguments are finite, then this function invokes the corresponding real function
applied to the values of the arguments. If one argument is a NaN, then the rules for
operations on NaNs are invoked. When one of the arguments is infinite, the result
required by the standard is returned.

The definition of £fp_op is given below. The function definitions for the other cases,
including appropriate exception handling, are in [6].

apply(op,finl, (fin2:fin| div?(op) => not zero?(fin))): real =
cases op of
add: value(finl) + value(fin2),
sub: value(finl) - value(fin2),
mult: value(finl) * value(fin2),
div: value(finl) / value(fin2)
endcases

fp_op(op,finl, (fin2:{fin| div?(op) => not zero?(fin)}),mode): fp_num
= real_to_fp(fp_round(apply(op,fini,fin2) ,mode))

Function fp_op calls function apply to perform the arithmetic operation and then
rounds the result prior to converting the result to a floating-point number. Function
apply uses the dependent type and predicate subtype mechanisms of PVS to restrict

the domain of its third argument to nonzero numbers when the operation is division®.

5 Comparison

This section discusses the most notable differences between the HOL and PVS systems
encountered during the specification of IEEE-854. We made errors in both the HOL
and PVS formalizations of IEEE-854. Our experience has been that we find such
errors quickly within PVS. This is due to two main factors: (1) The PVS specification
language is more expressive (primarily due to subtyping); and (2) The PVS prover is
more effective (due to decision procedures).

5.1 Theories and abstract theories

The HOL system does not explicitly support abstract theories. A mechanism has
been implemented in HOL by the library Abstract Theory [9] which permits the pa-

5This restriction was added to the original definition. PVS generated a TCC requiring that £fin2
be non-zero when the operator was div. This TCC was unprovable without the restriction.

rameterization of theories. However, instead of using the Abstract Theory library in
HOL, the parameter b was declared to be a constant and the parameters p, F,,,.,
and F,,;,, are arguments to functions. Making the parameters arguments to functions
permits the definition of functions that operate on mixed precisions within the same
theory.

Theories in PVS can be parameterized so that the formal parameters to the theory
are treated as constants in the theory body. In the definition of IEEE-854, the values
for b, p, Fpaw, and E,,;,, are used as the parameters to the PVS theory. The theory
can be instantiated for any supported precision.

5.1.1 Assumptions

Restricting the value of parameters in the HOL system can be accomplished by using
axioms or by defining predicates which are then used as assumptions in theory proofs.
The second alternative was used in the HOL definition of IEEE-854.

A PVS theory may contain assumptions that restrict the parameter values. Within
a theory, assumptions are similar to axioms defining properties of the theory parame-
ters. When a theory with assumptions is imported by another theory, the assumptions
generate proof obligations in the importing theory.

5.2 Subtyping

Subtyping is not supported in the HOL system. Real numbers, integers and naturals
are all of different type. In order to perform comparisons and arithmetic operations
between numbers of different type, explicit conversions must be made.

PVS defines the real numbers as a primitive type with the rationals, integers, and
natural numbers as subtypes. Thus, for example, functions defined on rationals can
accept integral arguments. While the subtyping mechanism adds a great deal of flex-
ibility to the PVS specification language, it also makes the type system undecidable.
When PVS is unable to determine if a declaration is well-typed, it generates proof
obligations called Type Correctness Conditions (TCCs). These proof obligations must
be discharged for PVS to fully admit a proof involving the corresponding function.
Often, an error in a function definition results in an unprovable TCC. Inspection of
such TCCs provides useful diagnostic information for debugging a specification.

5.2.1 Predicate Subtypes

HOL supports a limited form of predicate subtyping via restricted quantification.
This is syntactic sugar, and we did not use it in the definition of IEEE-854.

In PVS, any predicate defined on type a@ may be used to declare a subtype of a.
If PVS is unable to determine if a function argument is of the appropriate type, the
system will generate a TCC to ensure that the arguments conform to the restrictions
of the subtype.

5.2.2 Dependent Subtypes

PVS allows definitions to restrict the type of functions and arguments based on the
value of other arguments. This allows a finer touch in defining functions. An example
is the definition of apply in Section 4.3.

5.3 Abstract Datatypes

A new type declaration in the HOL system produces a theorem which can then be
used to manually construct recognizers and function extractors. Recognizers and
function extractor are automatically generated when using HOL with TkHolWork-
bench. TkHolWorkbench is a graphical user interface being developed by Donald
Syme.

An abstract datatype declaration in the PVS system produces several supporting
definitions. Predicates recognizing the range of each constructor are automatically
generated. Similarly, accessor functions, which extract the components of each con-
structor, are also defined. Many properties of abstract datatypes are automatically
added to PVS’ decision procedures.

5.4 Proofs

We have verified a number of properties of both specifications. In general, it was more
difficult to prove these properties using HOL. PVS automates much of the proof effort,
and a significant number of properties can be proven using just a few PVS prover
commands. In addition, the PVS decision procedures automate the verification of
most simple arithmetic properties.

As a simple illustration, consider the second constraint from Section 2, that
(Emaz — Emin)/p > 5. A simple consequence is that F,.. > Fin.

Using the HOL formulation of this constraint, a proof of this fact is:

g "(INT(5 * p)) below (emax minus emin) ==> emin below emax";;

e (ASM_CASES_TAC "INT 0 = INT(5 * p)");;
e (UNDISCH_TAC "INT 0 = INT(5 * p)" THEN
DISCH_THEN ((\th.REWRITE_TAC[th]) o ONCE_REWRITE_RULE[EQ_SYM_EQ]));;
STRIP_TAC;;
(REWRITE_TAC [BELOW_DEF]);;
(REWRITE_TAC [POS_IS_ZERO_BELOW;]);;
(ASM_REWRITE_TAC[]);;
(UNDISCH_TAC "~ (INT 0 = INT(5 * p))" THEN
DISCH_THEN (ASSUME_TAC o REWRITE_RULE [INT_ONE_ONE]));;
e (IMP_RES_TAC (DISJ_IMP (SPEC "5*p" LESS_O_CASES)));;
e (UNDISCH_TAC "0 < (5 * p)" THEN

® ® ® O® @

REWRITE_TAC[NUM_LESS_IS_INT_BELOW]);;
(REPEAT STRIP_TAC);;

(IMP_RES_TAC TRANSIT);;

(REWRITE_TAC [BELOW_DEF]);;
(REWRITE_TAC [POS_IS_ZERO_BELOW;]);;
(ASM_REWRITE_TAC[]);;

® ® ® ® O

This is probably not the most efficient HOL proof of this goal, but it is representative
of an initial proof attempt.
In PVS, the proof consists of a single command:

{1} 5 * p < E_max - E_min => E_min < E_max

Rule? (ground)
Applying propositional simplification and decision procedures,
Q.E.D.

In PVS, type information is available to the decision procedures. In this case, the
critical information is that p > 1. This sequent also illustrates the ease of using
different numeric types within the same PVS expression. FE,,,, and F,,;, have type
integer, p has type above (1), and the arithmetic operators are defined over the reals.

As a result of the difference in proof effort, more properties have been proved of
the PVS specification than of the HOL specification.

6 Concluding Remarks

We have presented a portion of our formalization of the IEEE-854 standard for radix-
independent floating-point arithmetic in both HOL and PVS. This effort enabled us
to highlight some differences between the two verification systems. In general, the
specification language on each system has the expressiveness to represent all proper-
ties of IEEE-854. However, we found that PVS was a more natural environment for
defining the standard. The specification language provided a rich collection of con-
structs that allowed for a straightforward definition of most aspects of the standard.
The capabilities of the PVS prover greatly simplified the task of verifying putative
challenges to our specification. The type system of PVS also aided in debugging
the specification. We frequently encountered unprovable type correctness conditions
(TCCs) in the course of defining IEEE-854 in PVS. In some cases these were due to
typographical errors, but in other cases they illustrated conceptual oversights in our
specification.

Thus far, the only proofs attempted have been to demonstrate that the specifica-
tions possess certain properties. There has been no attempt to verify the correctness
of algorithms with respect to these specifications. Also, the specifications have only

been reviewed by a few people. It is possible that some features of the standard have

been overlooked. Prior to using these specifications in a serious verification effort, it

will be necessary to subject them to a more rigorous review. Writing a specification

in a formal language makes it easier for us to catch errors; it does not prevent us from
making errors.

References

1]

2]

Geoff Barrett. Formal methods applied to a floating-point number system. IKEFE
Transactions on Software Engineering, 15(5):611-621, May 1989.

Victor A. Carreno. Interpretation of IEEE-854 floating-point standard and defi-
nition in the HOL system. To appear as NASA Technical Memorandum 110189,
1995.

M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In Gra-
ham Birtwistle and P. A. Subramanyam, editors, VLSI Specification, Verification
and Synthesis, pages 73—-128. Kluwer Academic Publishers, 1988.

IEEE. [EEE Standard for Binary Floating-Poinl Arithmetic, 1985. ANSI/IEEE
Std 754-1985.

IEEE. [EEFE Standard for Radiz-Independent Floating-Point Arithmetic, 1987.
ANSI/IEEE Std 854-1987.

Paul 5. Miner. Defining the IEEE-854 floating-point standard in PVS. Technical
Memorandum 110167, NASA, Langley Research Center, Hampton, VA, July 1995.

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.

IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.

N. Shankar. Abstract datatypes in PVS. Technical Report CSL-93-9, Computer
Science Laboratory, SRI International, Menlo Park, CA, December 1993.

Phillip J. Windley. Abstract theories in HOL. Research Report LAL-92-07, Lab-
oratory for Applied Logic, University of Idaho, June 1992.

